

WEIGHT INDICATOR
MICROCONTROLLER

E-AF

MODBUS

Communication protocol

E-AF_01.00_12.01_EN_MODBUS

E-AF_MODBUS Appendix

2

INDEX

1. GENERALITIES ... 3

2. SYMBOLS .. 3

3. SELECTION OF THE “MODBUS” SERIAL COMMUNICATION MODE ... 3

4. RTU (BINARY) MODBUS TRANSMISSION MODE .. 4

5. DESCRIPTION OF THE COMPONENTS AND MESSAGE FORMAT... 4

5.1 FRAME FORMAT IN RTU MODE ... 4

5.2 THE DEVICE ADDRESS .. 5

5.3 THE FUNCTION CODE .. 5

5.4 THE DATA .. 5

5.5 THE ERROR CHECK ... 5

5.6 EXAMPLE OF THE MESSAGE COMPONENTS IN RTU .. 6

6. MODBUS FUNCTIONS .. 7

6.1 LIST OF THE SUPPORTED FUNCTIONS ... 7

6.2 LIST OF THE TRANSMISSION STRINGS ... 7

6.3 FUNCTION 1, 3 and 4: READ COILS STATUS / HOLDING / INPUT REGISTERS (01, 03 and 04 Hex) 8

6.4 FUNCTION 5 and 6: PRESET COIL / SINGLE REGISTER (05 and 06 Hex) ... 8

6.5 FUNCTION 15 and 16: PRESET MULTIPLE COILS / REGISTERS (0F and 10 Hex) .. 9

7. ERROR CHECK METHODS .. 10

7.1 PARITY CHECK ... 10

7.2 CRC ALGORITHM: CYCLICAL REDUNDANCY CHECK (RTU MODE) .. 10

7.3 A PROCEDURE FOR CREATING THE CRC IS THE FOLLOWING .. 10

7.4 PLACING OF THE CRC IN THE MESSAGE .. 11

7.5 EXAMPLE IN C LANGUAGE IN GENERATING THE CRC .. 11

8. MODBUS EXCEPTIONS ... 12

8.1 LIST OF THE DETECTED EXCEPTIONS .. 12

9. DATA AREAS .. 13

9.1 INPUT REGISTERS DATA AREA .. 13

9.1.1 Input Status Register (Table 9.1.1) .. 15

9.1.2 Output Status Register (Table 9.1.2) ... 15

9.1.3 Command Status Register ... 16

9.2 HOLDING REGISTERS DATA AREA ... 16

9.2.1 Command Register .. 20

9.3 COILS STATUS DATA AREA ... 21

E-AF_MODBUS Appendix

3

1. GENERALITIES
The Modbus communication protocol defines the structure of the messages and the communication mode between a
“master” device which manages the system and one or more “slave” devices which respond to the interrogations of the
master (master-slave technique).
This protocol defines how the transmitter and receiver are identified, the data switch mode, the communication launch and
interruption modes and the error detection mode.

Only the master can start a transaction (Query) while the other devices (the slaves) respond by supplying the data
requested to the master or carrying out the actions requested in the query. The master can either address single slaves or
transmit a broadcast message to all. The slaves respond with a message (Response) to the queries which are individually
addressed, but do not transmit any answer to the master if there are broadcast messages.
A transaction can therefore have the following structures:
- Single question to a slave / Single answer from the slave
- Single broadcast message to all the slaves / No answer from the slaves

2. SYMBOLS
In the manual:

msb= most significant bit

MSB= most significant byte

lsb= less significant bit

LSB= less significant byte

3. SELECTION OF THE “MODBUS” SERIAL COMMUNICATION MODE
To select the Modbus communication protocol mode one should enter in the SET-UP ENVIRONMENT of the instrument:

 Input in the Setup environment

• Turn on the indicator, press TARE while the software version is displayed (the display shows the “LANG” menu).

• Select the "SEtuP" step (using the � key) and press ENTER;

• Select the "SEriAL" step (using the � key) and press ENTER;

• Select the "CoM PC" step (using the � key) and press ENTER;

• Select the “bAud” step (using the � key) and press ENTER; select the desired baud rate and press ENTER;

• Select the “Add.485” step (using the � key) and press ENTER; insert the machine code of the scale and press ENTER;

• Select the "ProtoC" step (using the � key) and press ENTER; select the Modbus protocol and press ENTER;

• Press various times the C key until the display shows the “SAVE?” message.

• Press ENTER to confirm the changes made.

See the instrument’s technical manual for further details.

E-AF_MODBUS Appendix

4

4. RTU (BINARY) MODBUS TRANSMISSION MODE
Each byte (8 bit) in a message has 2 hexadecimal characters of 4 bits.
The main advantage of this mode, in comparison to the ASCII, is its greater density of characters which allow for the
transmission of higher volume of data equal to the baud rate.

5. DESCRIPTION OF THE COMPONENTS AND MESSAGE FORMAT
In the RTU transmission modes, a Modbus message is put by the transmitting device inside a frame, which has a known
beginning and end point. This allows for the receiving devices to locate the beginning of the message, read the address
part and determine which device it is addressed to (or all the devices, if the message is broadcast) and to know when the
message is complete. In this way the incomplete messages can be detected and consequently indicated as errors.
The format of the messages, for the master as well as the slave, includes:
� The address of the device with which the master has established the transaction (the address 0 corresponds to a

broadcast message transmitted to all the slave devices).
� The function code which defines the requested action.
� The data which must be transmitted.
� The error check made up according to the CRC algorithm.

These fields are described in detail in the following paragraphs. For the Query and Response there is:

Query:
The function code tells the addressed slave device which action must be made. The data bytes contain some additional
information which the slave needs in order to execute the function. The error check field gives the slave a method in order
to confirm the integrity of the message contents.

Response:
� If the slave gives a normal answer:

The function code is the echo of the query function code. The data bytes contain the data retrieved from the slave, like
the registers’ values or the states.

� If a slave locates an error (format, parity, or in the CRC) or it is unable to execute the requested action:
The master message is considered non valid and rejected and consequently the action will not be executed; a
Response in which the function code is changed in order to indicate that is an error response and the data bytes contain
a code which describes the error.

5.1 FRAME FORMAT IN RTU MODE
In the RTU mode the messages start with a silent interval that lasts at least a period equal to 3,5 times the time period of a
character (T1-T2-T3-T4 time interval, see Figure 1). The devices monitor continuously the transmission bus, also during the
silent intervals. When the first field (the address) is received, each device decodes it in order to verify whether the device is
addressed.
For each field the characters which may be transmitted are all the decimal values from 0 to 255.
After the last transmitted character there will be a silent interval equal to at least 3,5 times the time period of a character,
indicating the end of the message; after this a new message can start.
The entire frame must be transmitted as a continuous stream. If there is a silent interval greater than the time period of 1,5
characters before the completion of the frame, the receiving device considers the incomplete message as ended and
assumes that the next byte is the address field of a new message.
In the same way, if a new message starts before a time period equal to 3,5 characters following a previous message, the
receiving device considers it a continuation of the previous message. This causes an error, and consequently the value in
the final field of the CRC will not be valid, due to the combination of the two messages.

E-AF_MODBUS Appendix

5

A typical message frame is shown in the following figure:

START

ADDRESS

FUNCTION

DATA CRC
CHECK

END

T1-T2-T3-T4

8 BITS

8 BITS

N * 8 BITS

16 BITS

T1-T2-T3-T4

Figure 1

5.2 THE DEVICE ADDRESS
As mentioned above, the Modbus transactions always involve the master, which manages the line, and a slave at a time
(except for the broadcast messages). In order to identify the message consignee, the numeric address of the selected slave
device (one byte: eight bits for the RTU) is transmitted as the first field of the frame. Each slave will therefore be assigned a
different address number so that it can be identified. When the slave transmits its answer, its address is entered in the
response’s field address in order that the master knows which slave is responding.

Valid addresses for the slave devices are within a range from 0 to 247, in particular:

0 � broadcast address (all the slave devices)
1 � minimum possible address for the slave
247 � maximum possible address for the slave

5.3 THE FUNCTION CODE
The field of the frame function code of a message contains eight bits (RTU). Valid codes are within the range from 1 to 255
decimals.
When a message is transmitted from a master to a slave device the function code field indicates to the slave what kind of
action should be executed (for example the reading of the Input Registers, etc.).
When a slave responds to the master, it uses the function code field in order to indicate either a normal response (without
errors) or a type of error which has already taken place (called exception responses). For a normal response, the slave
simply echoes the original function code, while for an exception response it gives back a code which is equivalent to the
original function code, but with the most significant bit set at the 1 logic value.
Besides the modification of the function code for an exception response, the slave enters a single code within the data field
of the response message, in order to tell the master which type of error has taken place or the reason for the exception.

5.4 THE DATA
The data field is made by using groups of two hexadecimal digits, in the range from 00 to FF Hex. This can be made by a
RTU character, in accordance with the network’s serial transmission mode.
The field data of the messages transmitted from the master to the slave devices contains additional information which the
slave must use in order to carry out the action defined by the function code.

5.5 THE ERROR CHECK
The contents of the error check field depend on the Modbus transmission mode because there are two distinct error check
methods. In particular:

The communication strings are checked by a CRC (Cyclical Redundancy Check) algorithm, see Section 7 for further
details.

The error check field contains 16 bits (implemented as 2 bytes of 8 bits), which are the result of the calculation of a CRC
algorithm executed on the contents of the message.
This field is the last of the message and the first byte is the one of the low order and is followed by one of the high order,
which is the last one of the frame.

E-AF_MODBUS Appendix

6

5.6 EXAMPLE OF THE MESSAGE COMPONENTS IN RTU
The following tables show an example of the fields inside a Modbus message, for a Query as well as for a normal
Response; in both cases the fields’ content is shown in hexadecimals and how the message is organized (framed) in RTU
mode.

Query: “Read Input Registers” to the 01 Slave Device address, for the reading of the contents of 3 registers starting
from register n°8.

Field Name Example (Hex) RTU: 8-bit field

Heading None

Slave Address 01 0000 0001

Function 04 0000 0100

Start Address (HIGH) 00 0000 0000

Start Address (LOW) 08 0000 1000

Number of Registers
(HIGH)

00 0000 0000

Number of Registers
(LOW)

03 0000 0011

Error Check CRC (16 bits)

Terminator None

Nr. of total bytes 8

Response:

Field Name Example (Hex) RTU: 8-bit field

Heading None

Slave Address 01 0000 0001

Function 04 0000 0100

Number of bytes 06 0000 0110

Data
(HIGH)

02 0000 0010

Data
(LOW)

2B 0010 1011

Data
(HIGH)

00 0000 0000

Data
(LOW)

00 0000 0000

Data
(HIGH)

00 0000 0000

Data
(LOW)

63 0110 0011

Error Check CRC (16 bits)

Terminator None

Nr. of total bytes 11

In the Response of the Slave there is the Function Echo indicating that it’s a normal type of answer.
The “Number of Bytes” field specifies how many groups of 8-bit data are given back, in other words, the number of bytes of
the “Data” fields is shown for the RTU.
For example the 63 Hex value is transmitted as a 8-bit byte (01100011).

E-AF_MODBUS Appendix

7

6. MODBUS FUNCTIONS
Each function is exposed in detail in the following pages and is made up of a QUERY (Master request →→→→ Instrument) and a

RESPONSE (Instrument response →→→→ Master).

NOTE:
Each character is an Hexadecimal type of character (made up of 4 bits).

o With 0x or Hex before a number it means that it has to do with a hexadecimal value.

6.1 LIST OF THE SUPPORTED FUNCTIONS
In the following table there are the active Modbus functions for the instrument.

Function Code Description
01 (0x01) READ COILS STATUS

03 (0x03) READ HOLDING REGISTERS

04 (0x04) READ INPUT REGISTERS

05 (0x02) PRESET SINGLE COIL

06 (0x06) PRESET SINGLE REGISTER

06 (0x06) PRESET SINGLE REGISTER

16 (0x10) PRESET MULTIPLE REGISTERS

 Table 1
In the parentheses there are the hexadecimal values.

6.2 LIST OF THE TRANSMISSION STRINGS
In the following paragraphs the functions (shown in Table 8) supported by the instrument are described in detail; for this
purpose one uses the following classification for the message fields:

� Address: 1 byte for the instrument address (slave).
� Function: Code or Number of the function to be executed.
� Number of bytes: represents the number of bytes which make up a datum.
� Error Check (CRC): for the error check, in the RTU and in the ASCII transmission modes it’s always 2 bytes. See

section 7 for further details.

Other fields for the message frames are described in detail in the various single functions.

NOTE: the following registers are defined, on which the functions operate:

- N°16 Input Registers (or “Input Registers”): written by the Instrument →→→→ read by the Master

- N°16 Output Registers (or “Holding Registers”): written by the Master →→→→ read by the Instrument

The input and output registers are fully described in section 9.

E-AF_MODBUS Appendix

8

6.3 FUNCTION 1, 3 and 4: READ COILS STATUS / HOLDING / INPUT REGISTERS (01, 03 and 04
Hex)

It reads the contents of the slave instrument’s registers (which the instrument will write); the broadcast
communication is not supported.

Query:
One specify the registers / coils data area to read (Function), the Initial Register (1st Register Address) from which the
reading starts and the Number of Registers which must be read (Nr. of Registers). The registers are addressed from 0: in
this way the registers from 1 to 16 are addressed as 0 to 15.

Address Function Address 1st Register

 High Low

Nr. of Registers

 High Low

Error
Check

A 04 00 08 00 01 CRC

Response:
The response message is made up of 2 bytes for each read register, with the binary content aligned on the right in each
byte. For each register the first byte contains the most significant bits and the second byte contains the least significant bits.

Address Function Address 1st Register

 High Low

Nr. of Registers

 High Low

Error
Check

A 04 02 00 0A CRC

Example: A = 01;
- in the Query: 1st Register address = 00 08; Number of Registers = 00 01
- in the Response: 1st Register = 00 0A

6.4 FUNCTION 5 and 6: PRESET COIL / SINGLE REGISTER (05 and 06 Hex)

It allows to set a single register (which the instrument or slave goes to read) to a determined value.
The broadcast transmission of this command is allowed and in which one can set the same register in all the
connected slaves.

Query:
One specifies the Register / Coil data area to write (Function), the Register Address which must be set (Register Address)
and the relative Value (Register Value). The registers are addressed starting from 0: in this way the registers from 1 to 16
are addressed as 0 to 15.

Address Function Address 1st Register

 High Low

Nr. of Registers

 High Low

Error
Check

A 06 00 01 00 03 CRC

Response:
It is the echo of the Query.

Address Function Address 1st Register

 High Low

Nr. of Registers

 High Low

Error
Check

A 06 00 01 00 03 CRC

Example: A = 01;
- in the Query: Register Address = 00 01; Register Value = 00 03
- in the Response: Register Address = 00 01; Register Value = 00 03

E-AF_MODBUS Appendix

9

6.5 FUNCTION 15 and 16: PRESET MULTIPLE COILS / REGISTERS (0F and 10 Hex)

Allows to set various registers (which the instrument or slave goes to read) to a determined value.

Query:
One specifies the registers / coils data area to write (Function). Here is specified the address of the First Register which
must be set (1st Register address), the Number of Registers to be written (Nr. of Registers) starting from the first, the
number of bytes transmitted for the values of the registers (2 bytes for each register) or Nr. of Bytes and then the values to
be assigned to the registers (1st Register value of 2 bytes, 2nd Register Value, etc.) starting from the first one addressed.

Address Function 1st Register
Address

High
Low

Nr. of
Registers

High Low

Nr. of
bytes

1st Register
Value

 High
Low

2nd Register
Value

 High
Low

Error Check

A 10 00 00 00 02 04 00 00 00 00 CRC

Response:
The response includes the identification of the modified registers (1st Register address and Nr. of Registers).

Address Function Address 1st Register

 High Low

Nr. of Registers

High Low

Error Check

A 10 00 00 00 02 CRC

Example: A = 01;
- in the Query: 1st Register Address = 00 00; Nr. of Registers = 00 02; Nr. of bytes = 04;

1st Register Value = 00 00; 2nd Register Value = 00 00;
- in the Response: 1st Register Address = 00 00; Nr. or registers = 00 02;

E-AF_MODBUS Appendix

10

7. ERROR CHECK METHODS
The Modbus serial communication uses two error check types:

Check on the character or parity (even or uneven), can be applied optionally to each character
Check on the frame (CRC algorithm), applied to the entire message.

Both the check on the character as well as the one on the frame of the message is created in the Master and applied to the
contents of the message before the transmission. The Slave checks each character and the entire frame of the message
during the reception.

7.1 PARITY CHECK
It is possible to configure the parity check in the following way:
n � no parity (none)
E � even parity (Even)

This determines how the parity is set in each character.

7.2 CRC ALGORITHM: CYCLICAL REDUNDANCY CHECK (RTU MODE)
In the RTU transmission mode, the messages include an error check field based on a CRC method, which checks the
contents of the entire message and is applied without any regard to any parity method used for the single characters. The
CRC field is made up of 2 bytes (containing a binary value of 16 bits) and is calculated from the transmitting device, which
puts the CRC at the end of the message. The receiving device calculates again the CRC during the reception of the
message, and compares the calculated value with the actual value received in the CRC field. If the two values are not the
same an error has taken place.

7.3 A PROCEDURE FOR CREATING THE CRC IS THE FOLLOWING
1. Loading a 16-bit register with FFFF Hex (all 1). This register is called Register CRC

2. OR-exclusive with the first byte of the message and the least significant byte of the CRC Register at 16 bit.
 The result is inserted in the CRC register.

3. The CRC Register is shifted of 1 bit to the right (towards the LSB), a 0 is inserted in the place of the MSB. The LSB is
extracted and examined.

4. If LSB = 0 →→→→ Step 3 is to be repeated. (another shift)

If LSB = 1 →→→→ The OR-ex is made between the CRC Register and the A001 Hex (1010 0000 0000 0001) polynomial
value.

5. Steps 3. and 4. are repeated until 8 shifts have been made; after this a byte of 8 bits have been completely processed.

6. Steps 2 to 5 are repeated for the next byte of 8 bits of the message.
 One continues until all the bytes are processed.

7. The final contents of the CRC Register are the CRC Value.

8. When the CRC is inserted within the message, its bytes (high and low) must be exchanged as described below.

E-AF_MODBUS Appendix

11

7.4 PLACING OF THE CRC IN THE MESSAGE
When the 16 bits of the CRC (2 bytes) are transmitted in the message, the least significant byte must be transmitted first,
followed by the most significant byte.

For example, if the CRC value is 1241 Hex (0001 0010 0100 0001):

Addr Func Data Data Data Data Data CRC

LOW

CRC

Fig. 5: Sequence of the CRC bytes.

7.5 EXAMPLE IN C LANGUAGE IN GENERATING THE CRC
A functioning example for the creation of the CRC in the C language is shown below.

NOTE: The function creates internally the swapping of the high and low bytes of the CRC. The bytes are already
exchanged in the CRC value which is given back by the function, which can then be placed directly in the message
for the transmission.

The function uses two arguments:

unsigned char *puchMsg; →→→→ A pointer to the message buffer which contains the binary data to be used for

creating the CRC
unsigned short usDataLen; →→→→ The quantity of bytes in the message buffer

The function gives back the CRC value as an unsigned short.

CRC generation function

unsigned short CRC16(unsigned char *puchMsg,
unsigned short usDataLen
)

{

unsigned short CRC;
int i, n;
unsigned short usPolynomial = 0xA001;
unsigned short usInitialReminder = 0xFFFF;
CRC = usInitialReminder;//initialisation CRC
for (i = 0; i < usDataLen; i++)//for each byte of the message it executes the division module-2 for the
polynomial
{

CRC = CRC ^ puchMsg[i];//XOR byte low CRC with byte message under exam
for (n = 0; n < 8; n++)// division module-2 at bit
{

if (CRC & 0x0001) //least significant bit CRC 1
{

CRC = CRC >> 1; //shift to the right of the CRC
CRC = CRC ^ usPolynomial; //XOR CRC with polynomial

}
else//bit least significant CRC 0
CRC = CRC >> 1; //shift to the right of the CRC

}
}

CRC = (CRC << 8) | (CRC >> 8); //switch of least significant and most significant byte
return CRC;

}

 41 12

E-AF_MODBUS Appendix

12

8. MODBUS EXCEPTIONS
In a normal response (Normal Response) the Slave device echoes the Function Code of the Query, putting it in the
Response Function field. All the function codes have their own most significant bit (MSB) set at 0 (values less than 80 Hex).
In an exception response (Exception Response) the slave sets the MSB of the Function Code at 1 (equivalent to summing
the value 80 Hex to the normal response code) in order to signal that an anomaly has taken place, and the Exception Code
is given back in the Data Field, in order to indicate the type of exception.

8.1 LIST OF THE DETECTED EXCEPTIONS

Active Modbus exceptions

Code

Exception

Description

01

Illegal Function

The Function Code received by the Query is not supported or not
valid

02

 Illegal Data Address

The Data Address received in the Query is not an address
supported by the Slave Device or is not valid

03

Illegal data Value

A Value in the Data field of the Query is not a value acceptable by
the Slave device or is not valid

06

 Slave Device Busy

The Slave is busy in processing a command which requires a lot of
time. The Master can transmit again the message later, when the
Slave is free

 Table 2

E-AF_MODBUS Appendix

13

9. DATA AREAS
There are 3 data areas, "Input", "Holding" and "Coils", defined this way due to the master’s point of view: while the "Input"
area is read by this device, the "Holding" and "Coils" ones are written.
The first 2 areas are organised in registers on which the Modbus protocol functions perform.
All the numeric values have the Big Endian format (the 1st byte is the most significant one) for the Data Input Area and the
Data Output Area, while these have the Little Endian format (the 1st byte is the least significant one) for the SETUP area.

9.1 INPUT REGISTERS DATA AREA
The input data area is read by the master (is therefore written by the instrument) and is made up of registers (input
registers), of 2 bytes.

Table 9.1: Modbus Input Registers

Setup section

Register Value

30001 (0) Software version

- Format of the Software Version
The software version is in the BCD format. The first byte of the register is the software release converted in the BCD format
and the second byte is the sub release converted in the BCD format.
Example: the software version is 02.11 is read 0000001000010001

30002 Configured channels

30003 Scale 1 capacity (High)

30004 Scale 1 capacity (Low)

30005 Scale 1 division

30006 Scale 1 decimals

30007 Scale 1 unit (1)

30008 Scale 2 capacity (High)

30009 Scale 2 capacity (Low)

30010 Scale 2 division

30011 Scale 2 decimals

30012 Scale 2 unit (1)

30013 Scale 3 capacity (High)

30014 Scale 3 capacity (Low)

30015 Scale 3 division

30016 Scale 3 decimals

30017 Scale 3 unit (1)

30018 Scale 4 capacity (High)

30019 Scale 4 capacity (Low)

30020 Scale 4 division

30021 Scale 4 decimals

30022 Scale 4 unit (1)

30023 Remote Scale capacity (High)

30024 Remote Scale capacity (Low)

30025 Remote Scale division

30026 Remote Scale decimals

30027 Remote Scale unit (1)

30028 Archive decimals

30029 Archive unit (1)

E-AF_MODBUS Appendix

14

(1) NOTE: Significance of the numeric value in the Unit of Measure field:

 0 → Grams

 1 → Kilograms

 2 → Tons

 3 → Pounds

Status section

Register Value

30101 (100) Gross weight (High)

30102 Gross weight (Low)

30103 Net weight (High)

30104 Net weight (Low)

- Format of the GROSS WEIGHT and NET WEIGHT value
Whole in absolute value (without decimals)
Example: if 3 decimals are set, the value 3,000 is read 3000

If 2 decimals are set, the value 3,00 is read 300

30105 Input status register

30106 Command status register

30107 Output status register

30108 Scale state

- Format of the Input Status Register value
See 9.1.1 section

- Format of the Command Status Register value
See 9.1.3 section

- Format of the Output Status Register value
See 9.1.2 section

30109 Present scale

30110 Present channel ADC value (High)

30111 Present channel ADC value (Low)

30112 Present channel mV value, 3 decimals (so it’s µV)

30113 High bit: sum mode (1 active, 0 not active); low bit: used channels

Application section

Register Value

 EAF03, EAF08, EAF09 EAF02 EAF04 EAF05

30201 Platform 1 weight (High) APW decimals Density (High) Currency decimals

30202 Platform 1 weight (Low) APW unit Density (Low) Currency decimals

30203 Platform 2 weight (High) Pcs decimals Gross Volume (High) Amount (Word 3)

30204 Platform 2 weight (Low) Pcs (High) Gross Volume (Low) Amount (Word 2)

30205 Platform 3 weight (High) for AF08 Pcs (Low) Net Volume (High) Amount (Word 1)

30206 Platform 3 weight (Low) for AF08 APW (High) Net Volume (Low) Amount (Word 0)

30207 Platform 4 weight (High) for AF08 APW (Low) Price (High)

30208 Platform 4 weight (Low) for AF08 Price (Low)

E-AF_MODBUS Appendix

15

Alibi memory section (for EAF08)

Register Value

30301 Gross weight (High)

30302 Gross weight (Low)

30303 Tare (High)

30304 Tare (Low)

30305 ID (High)

30306 ID (Low)

30307 Alibi memory status (rewrite: 8 bits, scale number: 3 bits, manual tare flag: 1 bit)

9.1.1 Input Status Register (Table 9.1.1)
It is Input Register number 104; two bytes defined in the following way:

Bit Description Bit meaning
 0 1

(LSB)

0 Net Weight Polarity + --

1 Gross Weight Polarity + --

2 Weight Stability NO YES

3 Underload Condition NO YES

4 Overload Condition NO YES

5 Entered Tare Condition NO YES

6 Manual Tare Condition NO YES

7 Gross ZERO zone Out of Zone 0 In Zone 0

(MSB)

8 Input 1 DISABLED ENABLED

9 Input 2 DISABLED ENABLED

10 Input 3 DISABLED ENABLED

11 Input 4 DISABLED ENABLED

12 Input 5 DISABLED ENABLED

13 Input 6 DISABLED ENABLED

14 Input 7 DISABLED ENABLED

15 Input 8 DISABLED ENABLED

9.1.2 Output Status Register (Table 9.1.2)
It is Input Register number 106; two bytes defined in the following way:

Bit Description Bit meaning
 0 1

(LSB)

0 RELAY 1 NOT EXCITED EXCITED

1 RELAY 2 NOT EXCITED EXCITED

2 RELAY 3 NOT EXCITED EXCITED

3 RELAY 4 NOT EXCITED EXCITED

4 RELAY 5 NOT EXCITED EXCITED

5 RELAY 6 NOT EXCITED EXCITED

6 RELAY 7 NOT EXCITED EXCITED

7 RELAY 8 NOT EXCITED EXCITED

(MSB)

8 RELAY 9 NOT EXCITED EXCITED

9 RELAY 10 NOT EXCITED EXCITED

E-AF_MODBUS Appendix

16

10 RELAY 11 NOT EXCITED EXCITED

11 RELAY 12 NOT EXCITED EXCITED

12 RELAY 13 NOT EXCITED EXCITED

13 RELAY 14 NOT EXCITED EXCITED

14 RELAY 15 NOT EXCITED EXCITED

15 RELAY 16 NOT EXCITED EXCITED

9.1.3 Command Status Register
It is Input Register number 105; two bytes defined in the following way:

High Byte → Last received command (see Table 5.2.1)

Low Byte: low nibble → Counting of processed commands (module 16)

 high nibble → Result of last received command
In which the Result of the last received command can assume the following values:
� OK = 0 Corrected and executed command
� ExceptionCommandWrong = 1 Incorrect command
� ExceptionCommandData = 2 Data in the incorrect command
� ExceptionCommandNotAllowed = 3 Command not allowed
� ExceptionNoCommand = 4 Inexistent command

9.2 HOLDING REGISTERS DATA AREA
The "Holding" data area is written by the master (is therefore read by the instrument) and is made up of registers (holding
registers), of 2 bytes.

Table 9.2: Modbus Holding Registers

Commands section

Register Value

40001 (0) Command register

40002 Parameter 1 (High)

40003 Parameter 1 (Low)

2 words Set-points section

Register Value

40101 (100) Set-point 1 ON value (High)

40102 Set-point 1 ON value (Low)

40103 Set-point 2 ON value (High)

40104 Set-point 2 ON value (Low)

40105 Set-point 3 ON value (High)

40106 Set-point 3 ON value (Low)

40107 Set-point 4 ON value (High)

40108 Set-point 4 ON value (Low)

40109 Set-point 5 ON value (High)

40110 Set-point 5 ON value (Low)

40111 Set-point 6 ON value (High)

40112 Set-point 6 ON value (Low)

40113 Set-point 7 ON value (High)

40114 Set-point 7 ON value (Low)

40115 Set-point 8 ON value (High)

40116 Set-point 8 ON value (Low)

40117 Set-point 9 ON value (High)

E-AF_MODBUS Appendix

17

40118 Set-point 9 ON value (Low)

40119 Set-point 10 ON value (High)

40120 Set-point 10 ON value (Low)

40121 Set-point 11 ON value (High)

40122 Set-point 11 ON value (Low)

40123 Set-point 12 ON value (High)

40124 Set-point 12 ON value (Low)

40125 Set-point 13 ON value (High)

40126 Set-point 13 ON value (Low)

40127 Set-point 14 ON value (High)

40128 Set-point 14 ON value (Low)

40129 Set-point 15 ON value (High)

40130 Set-point 15 ON value (Low)

40131 Set-point 16 ON value (High)

40132 Set-point 16 ON value (Low)

40133 Set-point 1 OFF value (High)

40134 Set-point 1 OFF value (Low)

40135 Set-point 2 OFF value (High)

40136 Set-point 2 OFF value (Low)

40137 Set-point 3 OFF value (High)

40138 Set-point 3 OFF value (Low)

40139 Set-point 4 OFF value (High)

40140 Set-point 4 OFF value (Low)

40141 Set-point 5 OFF value (High)

40142 Set-point 5 OFF value (Low)

40143 Set-point 6 OFF value (High)

40144 Set-point 6 OFF value (Low)

40145 Set-point 7 OFF value (High)

40146 Set-point 7 OFF value (Low)

40147 Set-point 8 OFF value (High)

40148 Set-point 8 OFF value (Low)

40149 Set-point 9 OFF value (High)

40150 Set-point 9 OFF value (Low)

40151 Set-point 10 OFF value (High)

40152 Set-point 10 OFF value (Low)

40153 Set-point 11 OFF value (High)

40154 Set-point 11 OFF value (Low)

40155 Set-point 12 OFF value (High)

40156 Set-point 12 OFF value (Low)

40157 Set-point 13 OFF value (High)

40158 Set-point 13 OFF value (Low)

40159 Set-point 14 OFF value (High)

40160 Set-point 14 OFF value (Low)

40161 Set-point 15 OFF value (High)

40162 Set-point 15 OFF value (Low)

40163 Set-point 16 OFF value (High)

40164 Set-point 16 OFF value (Low)

1 word Set-points section (low part)

Register Value

40201 (200) Set-point 1 ON value

40202 Set-point 2 ON value

40203 Set-point 3 ON value

40204 Set-point 4 ON value

E-AF_MODBUS Appendix

18

40205 Set-point 5 ON value

40206 Set-point 6 ON value

40207 Set-point 7 ON value

40208 Set-point 8 ON value

40209 Set-point 9 ON value

40210 Set-point 10 ON value

40211 Set-point 11 ON value

40212 Set-point 12 ON value

40213 Set-point 13 ON value

40214 Set-point 14 ON value

40215 Set-point 15 ON value

40216 Set-point 16 ON value

40217 Set-point 1 OFF value

40218 Set-point 2 OFF value

40219 Set-point 3 OFF value

40220 Set-point 4 OFF value

40221 Set-point 5 OFF value

40222 Set-point 6 OFF value

40223 Set-point 7 OFF value

40224 Set-point 8 OFF value

40225 Set-point 9 OFF value

40226 Set-point 10 OFF value

40227 Set-point 11 OFF value

40228 Set-point 12 OFF value

40229 Set-point 13 OFF value

40230 Set-point 14 OFF value

40231 Set-point 15 OFF value

40232 Set-point 16 OFF value

Scale total section

Register Value

40301 (300) Net Partial Total or Entered Partial Total for EAF03, EAF09 (Word 3)

40302 Net Partial Total or Entered Partial Total for EAF03, EAF09 (Word 2)

40303 Net Partial Total or Entered Partial Total for EAF03, EAF09 (Word 1)

40304 Net Partial Total or Entered Partial Total for EAF03, EAF09 (Word 0)

40305 Gross Partial Total or Exited Partial Total for EAF03, EAF09 (Word 3)

40306 Gross Partial Total or Exited Partial Total for EAF03, EAF09 (Word 2)

40307 Gross Partial Total or Exited Partial Total for EAF03, EAF09 (Word 1)

40308 Gross Partial Total or Exited Partial Total for EAF03, EAF09 (Word 0)

40309 Weighs Partial Total (Word 3)

40310 Weighs Partial Total (Word 2)

40311 Weighs Partial Total (Word 1)

40312 Weighs Partial Total (Word 0)

40313 Net General Total or Entered General Total for EAF03, EAF09 (Word 3)

40314 Net General Total or Entered General Total for EAF03, EAF09 (Word 2)

40315 Net General Total or Entered General Total for EAF03, EAF09 (Word 1)

40316 Net General Total or Entered General Total for EAF03, EAF09 (Word 0)

40317 Gross General Total or Exited General Total for EAF03, EAF09 (Word 3)

40318 Gross General Total or Exited General Total for EAF03, EAF09 (Word 2)

40319 Gross General Total or Exited General Total for EAF03, EAF09 (Word 1)

40320 Gross General Total or Exited General Total for EAF03, EAF09 (Word 0)

40321 Weighs General Total (Word 3)

40322 Weighs General Total (Word 2)

40323 Weighs General Total (Word 1)

E-AF_MODBUS Appendix

19

40324 Weighs General Total (Word 0)

40325 Net Grand Total or Entered Grand Total for EAF03, EAF09 (Word 3)

40326 Net Grand Total or Entered Grand Total for EAF03, EAF09 (Word 2)

40327 Net Grand Total or Entered Grand Total for EAF03, EAF09 (Word 1)

40328 Net Grand Total or Entered Grand Total for EAF03, EAF09 (Word 0)

40329 Gross Grand Total or Exited Grand Total for EAF03, EAF09 (Word 3)

40330 Gross Grand Total or Exited Grand Total for EAF03, EAF09 (Word 2)

40331 Gross Grand Total or Exited Grand Total for EAF03, EAF09 (Word 1)

40332 Gross Grand Total or Exited Grand Total for EAF03, EAF09 (Word 0)

40333 Weighs Grand Total (Word 3)

40334 Weighs Grand Total (Word 2)

40335 Weighs Grand Total (Word 1)

40336 Weighs Grand Total (Word 0)

40337 Net First Archive Total or Entered First Archive Total for EAF03, EAF09 (Word 3)

40338 Net First Archive Total or Entered First Archive Total for EAF03, EAF09 (Word 2)

40339 Net First Archive Total or Entered First Archive Total for EAF03, EAF09 (Word 1)

40340 Net First Archive Total or Entered First Archive Total for EAF03, EAF09 (Word 0)

40341 Gross First Archive Total or Exited First Archive Total for EAF03, EAF09 (Word 3)

40342 Gross First Archive Total or Exited First Archive Total for EAF03, EAF09 (Word 2)

40343 Gross First Archive Total or Exited First Archive Total for EAF03, EAF09 (Word 1)

40344 Gross First Archive Total or Exited First Archive Total for EAF03, EAF09 (Word 0)

40345 Weighs First Archive Total (Word 3)

40346 Weighs First Archive Total (Word 2)

40347 Weighs First Archive Total (Word 1)

40348 Weighs First Archive Total (Word 0)

40349 Net Second Archive Total or Entered Second Archive Total for EAF03, EAF09 (Word 3)

40350 Net Second Archive Total or Entered Second Archive Total for EAF03, EAF09 (Word 2)

40351 Net Second Archive Total or Entered Second Archive Total for EAF03, EAF09 (Word 1)

40352 Net Second Archive Total or Entered Second Archive Total for EAF03, EAF09 (Word 0)

40353 Gross Second Archive Total or Exited Second Archive Total for EAF03, EAF09 (Word 3)

40354 Gross Second Archive Total or Exited Second Archive Total for EAF03, EAF09 (Word 2)

40355 Gross Second Archive Total or Exited Second Archive Total for EAF03, EAF09 (Word 1)

40356 Gross Second Archive Total or Exited Second Archive Total for EAF03, EAF09 (Word 0)

40357 Weighs Second Archive Total (Word 3)

40358 Weighs Second Archive Total (Word 2)

40359 Weighs Second Archive Total (Word 1)

40360 Weighs Second Archive Total (Word 0)

Not present in EAF01, EAF02, EAF

40361 Net Third Archive Total or Entered Second Archive Total for EAF03, EAF09 (Word 3)

40362 Net Third Archive Total or Entered Second Archive Total for EAF03, EAF09 (Word 2)

40363 Net Third Archive Total or Entered Second Archive Total for EAF03, EAF09 (Word 1)

40364 Net Third Archive Total or Entered Second Archive Total for EAF03, EAF09 (Word 0)

40365 Gross Third Archive Total or Exited Second Archive Total for EAF03, EAF09 (Word 3)

40366 Gross Third Archive Total or Exited Second Archive Total for EAF03, EAF09 (Word 2)

40367 Gross Third Archive Total or Exited Second Archive Total for EAF03, EAF09 (Word 1)

40368 Gross Third Archive Total or Exited Second Archive Total for EAF03, EAF09 (Word 0)

40369 Weighs Third Archive Total (Word 3)

40370 Weighs Third Archive Total (Word 2)

40371 Weighs Third Archive Total (Word 1)

40372 Weighs Third Archive Total (Word 0)

E-AF_MODBUS Appendix

20

- Format of the GROSS TOTAL and NET TOTAL value
Whole in absolute value (without decimals)
Example: if 3 archive decimals are set, the value 3,000 is read 3000

If 2 archive decimals are set, the value 3,00 is read 300

Archive Record section

Register Value

40401 (400) First Archive Selected Record

40402 Second Archive Selected Record

40403 Third Archive Selected Record

In which:

Firmware First archive Second archive Third archive

EAF01 Articles Customers

EAF02 Articles Customers

EAF03 Customers Materials Vehicles

EAF04 Articles

EAF05 Products Customers Ingredients

EAF08 Database

EAF09 Customers Materials Vehicles

NOTE: The value 65535 identifies the deselected record.

9.2.1 Command Register
It is the Output Register number 0. It is made up of two bytes and can take on the following values, which correspond to
implemented commands described in table 9.2.1.

Execution of a Command
The execution of a command happens when the contents of the Command Register vary (therefore to repeat the last
command one should first set the Command register at the NO COMMAND value, and then at the command value).

Table 9.2.1: Command Register

Command Value Description Parameters

NO_COMMAND 0 (0x0000) No command None

ZERO_REQUEST 1 (0x0001) Zero scale None

TARE_REQUEST 2 (0x0002) Auto tare None

TAREMAN_REQUEST 3 (0x0003) Preset tare Param. 1 = tare value (3)

REMOTE_SCALE_REQUEST 4 (0x0004) Remote scale switch None

CHANNEL_1_REQUEST 5 (0x0005) Scale 1 switch None

CHANNEL_2_REQUEST 6 (0x0006) Scale 2 switch None

CHANNEL_3_REQUEST 7 (0x0007) Scale 3 switch None

CHANNEL_4_REQUEST 8 (0x0008) Scale 4 switch None

SUM_REQUEST 9 (0x0009) Sum mode switch None

READ_ALIBI (for EAF08) 10 (0x0010) Read alibi memory Param.1 = rewrite, param. 2 = ID

WRITE_ALIBI (for EAF08) 11 (0x0011) Write alibi memory None

(3) NOTE: Format of the Parameter 1 and Parameter 2 values:

 →→→→ For the MANUAL TARE (only Param1):

Example: if 3 decimals are set, in order to enter the value 3,000 → one should write 3000

If 2 decimals are set, in order to enter the value 3,00 → one should write 300

E-AF_MODBUS Appendix

21

9.3 COILS STATUS DATA AREA

The "Coils status" data area is written by the master (is therefore read by the instrument) and is made up of coils of 1 bit.

Table 9.3: Modbus Coils Status

N°Coil. Coils Status Bit meaning

 0 1

00001 (0) Digital output 1 (4) Not active Active

00002 (1) Digital output 2 (4) Not active Active

00003 (2) Digital output 3 (4) Not active Active

00004 (3) Digital output 4 (4) Not active Active

00005 (4) Digital output 5 (4) Not active Active

00006 (5) Digital output 6 (4) Not active Active

00007 (6) Digital output 7 (4) Not active Active

00008 (7) Digital output 8 (4) Not active Active

00009 (8) Digital output 9 (4) Not active Active

00010 (9) Digital output 10 (4) Not active Active

00011 (10) Digital output 11 (4) Not active Active

00012 (11) Digital output 12 (4) Not active Active

00013 (12) Digital output 13 (4) Not active Active

00014 (13) Digital output 14 (4) Not active Active

00015 (14) Digital output 15 (4) Not active Active

00016 (15) Digital output 16 (4) Not active Active

(4) NOTE: Writing allowed if the related output has no associated function.

